February 6, 2023

Math 261
 Spring 2023 Lecture 1

Feb 19-8:47 AM

Some Review

1) Solve $3 x-8=x+14$

$$
\begin{aligned}
3 x-x & =14+8 \\
2 x & =22 \\
x & =\frac{22}{2} \quad x=11
\end{aligned}
$$

2) Solve $\quad 2 x^{2}=5 x+7$

$$
2 x^{2}-5 x-7=0
$$

$$
(2 x-7)(x+1)=0
$$

By Eero-Product Rule

$$
\begin{array}{cll}
2 x-7=0 & \text { OR } & x+1=0 \\
x=\frac{7}{2} & x=-1 \quad & 2)\left\{-1, \frac{7}{2}\right\}
\end{array}
$$

3) Use Quadratic formula to Solve

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& a x^{2}-5 x-7=0 \\
& a=2 \\
& b=-5 \\
& c=-7 \\
& \\
& b^{2}-4 a c=(-5)^{2}-4(2)(-7)=25+56=81 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Solve है graph

$$
4 x-3 \leq 6(x+4)+6
$$

$$
+\int_{-16,5}^{\infty}
$$

Interval notation Set-Buibler notation

$$
[-16.5, \infty) \quad\{x \mid x \geq-16.5\}
$$

$$
\begin{aligned}
& -2 x \leq 33
\end{aligned}
$$

Graph $y=\frac{2}{3} x-2$.
slope-Int. form

$$
y=m x+b
$$

$$
m=\frac{\text { Rise }}{\text { Run }}=\frac{2}{3}
$$

Feb 6-9:05 AM

Consider the right triangle below:

1) find its hypotenuse

$$
24^{2}+7^{2}=x^{2} \rightarrow x=25
$$

Pythagorean Thru
2) Find all six trig. Function
for the marked angle

$$
\begin{array}{ll}
\sin A=\frac{7}{25} & \operatorname{Csc} A=\frac{25}{7} \\
\cos A=\frac{24}{25} & \operatorname{Sec} A=\frac{25}{24} \\
\tan A=\frac{7}{24} & \cot A=\frac{24}{7}
\end{array}
$$

$$
\theta=330^{\circ}
$$

1) Draw θ in Standard Position.
2) Give its Reference Angle.
 θ is in $Q \mathbb{V}$
3) find $\sin \theta=-\frac{1}{2} \quad \csc \theta=-2$
$\operatorname{Sin} 30^{\circ}=\frac{1}{2} \quad \operatorname{Cos} \theta=+\frac{\sqrt{3}}{2} \quad \operatorname{Sec} \theta=+\frac{2}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{2}-20}{}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \tan \theta=-\frac{\sqrt{3}}{3} \quad \cot \theta=-\frac{3}{\sqrt{3}} \sqrt[{\sqrt{3}}]{3}=\sqrt{3}$ $\tan 30^{\circ}=\frac{\sqrt{3}}{3}$

Solve $\tan x=1$ in $\left[0^{\circ}, 360^{\circ}\right)$
RA. 45°
$\tan x>0$ in
QI, QUIT

$\left\{45^{\circ}, 225^{\circ}\right\} \begin{gathered}\text { Convert to } \\ \text { Radians }\end{gathered}$
Radians $\quad\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}$
$90^{\circ}=\frac{\pi}{2} \mathrm{Rad}$.

$$
\begin{aligned}
2225^{\circ} & =5\left(45^{\circ}\right) \\
& =5 \cdot \frac{\pi}{4}=\frac{5 \pi}{4}
\end{aligned}
$$

Divide by 2

$$
45^{\circ}=\frac{\pi}{4} \mathrm{Rad}
$$

Feb 6-9:30 AM

Simplify $\frac{x^{2}-10 x+24}{x^{2}-16}$

$$
=\frac{(x-6)(x-4)}{(x-4)(x+4)}=\frac{x-6}{x+4}
$$

Simplify $\frac{\frac{1}{x}-1}{x-1}=\frac{x \cdot \frac{1}{x}-x \cdot 1}{x(x-1)}$

$$
\begin{aligned}
L C D=x & =\frac{1-x}{x(x-1)} \\
& =\frac{-1(x-1)}{x(x-1)}=\frac{-1}{x}
\end{aligned}
$$

Feb 6-9:41 AM

Graph displayed below belongs to $y=\frac{1}{x}$

As $x \rightarrow 0$ from the right, $y \rightarrow \infty$

$$
x \rightarrow 0^{+}
$$

As $x \rightarrow 0$ from the left, $y \rightarrow-\infty$

$$
x \rightarrow 0^{-}
$$

1) Go to wWW.mymath classes.com
2) Be familiar with office hours
3) Go to math 261
4) find Study Guide O, and do it.
